Performance of a Novel Chaotic Firefly Algorithm with Enhanced Exploration for Tackling Global Optimization Problems: Application for Dropout Regularization
Performance of a Novel Chaotic Firefly Algorithm with Enhanced Exploration for Tackling Global Optimization Problems: Application for Dropout Regularization
Autori:
Časopis: Mathematics
Volume, no: 9 , 21
ISSN: 2227-7390
DOI: 10.3390/math9212705
Stranice: 1-33
Apstrakt:
Swarm intelligence techniques have been created to respond to theoretical and practical global optimization problems. This paper puts forward an enhanced version of the firefly algorithm that corrects the acknowledged drawbacks of the original method, by an explicit exploration mechanism and a chaotic local search strategy. The resulting augmented approach was theoretically tested on two sets of bound-constrained benchmark functions from the CEC suites and practically validated for automatically selecting the optimal dropout rate for the regularization of deep neural networks. Despite their successful applications in a wide spectrum of different fields, one important problem that deep learning algorithms face is overfitting. The traditional way of preventing overfitting is to apply regularization; the first option in this sense is the choice of an adequate value for the dropout parameter. In order to demonstrate its ability in finding an optimal dropout rate, the boosted version of the firefly algorithm has been validated for the deep learning subfield of convolutional neural networks, with respect to five standard benchmark datasets for image processing: MNIST, Fashion-MNIST, Semeion, USPS and CIFAR-10. The performance of the proposed approach in both types of experiments was compared with other recent state-of-the-art methods. To prove that there are significant improvements in results, statistical tests were conducted. Based on the experimental data, it can be concluded that the proposed algorithm clearly outperforms other approaches.
Ključne reči: convolutional neural networks; dropout; regularization; metaheuristics; swarm intelligence; optimization; firefly algorithm
Priložene datoteke:
- Nebojsa Bacanin Dzakula, Ruxandra Stoean, Miodrag Zivkovic, Aleksandar Petrovic, Tarik A Rashid, Timea Bezdan. 2021 [8468].pdf ( veličina: 1018,63 KB, broj pregleda: 272 )
Kategorije objave:
Bibliografske reference nastavnika Univerziteta Singidunum
Zahvaljujemo se što ste preuzeli publikaciju sa portala Singipedia.
Ukoliko želite da se prijavite za obaveštenja o sadržajima iz oblasti ove publikacije, možete nam ostaviti adresu svoje elektronske pošte.