Optimization of multimodal trait prediction using Particle Swarm Optimization
Optimization of multimodal trait prediction using Particle Swarm Optimization
Autori:
Časopis: Studies in Informatics and Control
Volume, no: 31 , 4
ISSN: 1841-429X
Stranice: 25-34
Link: https://sic.ici.ro/wp-content/uploads/2022/12/Art.-3-Issue-4-2022.pdf
Apstrakt:
Multimodal trait prediction is one of the hardest problems in the domain of Computer Science, Machine Learning, and neural networks. Human traits are subjected to changes in terms of time, situation, place, observer, etc. This paper will try to overcome the problem through the optimization of multimodal trait prediction using Particle Swarm Optimization (PSO) algorithm. Parameter optimization problem based on PSO shown in this paper represents a method that is more efficient for both linear and nonlinear models. The obtained results show that PSO can improve both the prediction of the aggregation model which gives a linear approximation of traits and the nonlinear robust estimation models based on the Huber function.
Ključne reči: Particle Swarm Optimization, Metaheuristics, Aggregation functions, Robust loss function, Apparent personality analysis, Personality classification
Kategorije objave:
Bibliografske reference nastavnika Univerziteta Singidunum
Zahvaljujemo se što ste preuzeli publikaciju sa portala Singipedia.
Ukoliko želite da se prijavite za obaveštenja o sadržajima iz oblasti ove publikacije, možete nam ostaviti adresu svoje elektronske pošte.