Robust least mean square adaprive FIR filter algorithm

Časopis: IEE Proceedings - Vision

Volume, no: 148 , 5

ISSN: 1350-245X

DOI: 10.1049/ip-vis:20010594

Stranice: 332-336

Link: http://digital-library.theiet.org/content/journals/10.1049/ip-vis_20010594

Apstrakt:
The authors propose a new robust adaptive FIR filter algorithm for system identification applications based on a statistical approach named the M estimation. The proposed robust least mean square algorithm differs from the conventional one by the insertion of a suitably chosen nonlinear transformation of the prediction residuals. The effect of nonlinearity is to assign less weight to a small portion of large residuals so that the impulsive noise in the desired filter response will not greatly influence the final parameter estimates. The convergence of the parameter estimates is established theoretically using the ordinary differential equation approach. The feasibility of the approach is demonstrated with simulations.
Ključne reči: convergence of numerical methods; impulse noise; filtering theory; parameter estimation; least mean squares methods; FIR filters; prediction theory; adaptive filters; differential equations