On k-circulant matrices involving geometric sequence
On k-circulant matrices involving geometric sequence
Autori:
Časopis: Hacettepe Journal of Mathematics and Statistics
Volume, no: 48 , 3
ISSN: 1303-5010
Stranice: 805-817
Apstrakt:
In this paper we consider a k-circulant matrix with geometric sequence, where k is a nonzero complex number. The eigenvalues, the determinant, the Euclidean norm and bounds for the spectral norm of such matrix are investigated. The method for obtaining the inverse of a nonsingular k-circulant matrix, was presented in [On k-circulant matrices (with geometric sequence), Quaest. Math. 2016]. A generalization of that method is given in this paper, and using it, the inverse of a nonsingular k-circulant matrix with geometric sequence is obtained. The Moore-Penrose inverse of a singular k-circulant matrix with geometric sequence is determined in a different way than the way using in [On k-circulant matrices (with geometric sequence), Quaest. Math. 2016]
Ključne reči: k-circulant matrix; geometric sequence; eigenvalues; determinant; matrix inverse; norms of a matrix.
Kategorije objave:
Bibliografske reference nastavnika Univerziteta Singidunum
Zahvaljujemo se što ste preuzeli publikaciju sa portala Singipedia.
Ukoliko želite da se prijavite za obaveštenja o sadržajima iz oblasti ove publikacije, možete nam ostaviti adresu svoje elektronske pošte.