On k-circulant matrices involving the Pell-Lucas (and the modified Pell) numbers
On k-circulant matrices involving the Pell-Lucas (and the modified Pell) numbers
Autori:
Časopis: Computational and Applied Mathematics
Volume, no: 40 , 4
ISSN: 1807-0302
DOI: 10.1007/s40314-021-01473-y
Stranice: 1-15
Apstrakt:
Let k be a nonzero complex number. In this paper, we consider a k-circulant matrix whose first row is (Q1,Q2,…,Qn), where Qn is the nth Pell–Lucas number. The formulas for the eigenvalues of such matrix are obtained. Namely, the result which can be obtained from the result of Theorem 7. (Yazlik and Taskara, J Inequal Appl 2013:394, 2013) is improved. The obtained formulas for the eigenvalues of a k-circulant matrix involving the Pell–Lucas numbers show that the result of Theorem 8. (Jing, Li and Shen, WSEAS Trans Math 12(3):341-351, 2013) (i.e. Theorem 8. (Yazlik and Taskara 2013)) is not always applicable. The Euclidean norm of such matrix is determined. The upper and lower bounds for the spectral norm of a k-circulant matrix whose first row is (Q1^{-1},Q2^{-1},…,Qn^{-1}) are also investigated. The obtained results are illustrated by examples. As a consequence of the previous results, the eigenvalues, the determinant, the Euclidean norm of a k-circulant matrix whose first row is (q1,q2,…,qn), where qn is the nth modified Pell number, are presented. Also, the upper and lower bounds for the spectral norm of a k-circulant matrix whose first row is (q1^{-1},q2^{-1},…,qn^{-1}) are given
Ključne reči: k-circulant matrix; Pell–Lucas numbers; modified Pell numbers; eigenvalues; norms of a matrix
Kategorije objave:
Bibliografske reference nastavnika Univerziteta Singidunum
Zahvaljujemo se što ste preuzeli publikaciju sa portala Singipedia.
Ukoliko želite da se prijavite za obaveštenja o sadržajima iz oblasti ove publikacije, možete nam ostaviti adresu svoje elektronske pošte.