Monocular Depth Estimation Using State-of-the-art Algorithms: a Review
Monocular Depth Estimation Using State-of-the-art Algorithms: a Review
Autori:
Izdanje: Sinteza 2023 - International Scientific Conference on Information Technology and Data Related Research
DOI: 10.15308/Sinteza-2023-100-104
Oblast: Information Technology
Stranice: 100-104
Apstrakt:
Monocular Depth Estimation is the process of calculating the depth value of each pixel given a single RGB image. This challenging computer vision task is the main prerequisite for determining scene understanding for applications such as 3D scene reconstruction, augmented and virtual reality. Additionally, a lot of robotics issues, like mapping, localization, and obstacle avoidance for terrestrial and aerial vehicles, depend on depth information. Five monocular depth estimation techniques are compared. This comparison focuses on how generalizable the methods are. According to this study, monocular depth estimation techniques frequently exhibit artifacts when used on images that are not part of the training set, despite performing well on images that are similar to the training images. We test the various approaches using photos that resemble training data as well as paintings or images with odd perspectives.
Ključne reči: Depth Estimation, Monocular Depth Estimation, Computer Vision, Deep Learning, Comparison
Priložene datoteke:
- US - SINTEZA - 2023 - RAD 14 - 100 -104 ( veličina: 651,49 KB, broj pregleda: 141 )
Kategorije objave:
Radovi na konferenciji Sinteza 2023, Beograd, Srbija
Zahvaljujemo se što ste preuzeli publikaciju sa portala Singipedia.
Ukoliko želite da se prijavite za obaveštenja o sadržajima iz oblasti ove publikacije, možete nam ostaviti adresu svoje elektronske pošte.
Preuzimanje citata:
BibTeX format
RefWorks Tagged format
Unapred formatirani prikaz citata
BibTeX format
@article{article, author = {T. Dogandžić and A. Jovanović}, title = {Monocular Depth Estimation Using State-of-the-art Algorithms: a Review}, journal = {Sinteza 2023 - International Scientific Conference on Information Technology and Data Related Research}, year = 2023, pages = {100-104}, doi = {10.15308/Sinteza-2023-100-104} }
RT Conference Proceedings A1 Tea Dogandžić A1 Anđela Jovanović T1 Monocular Depth Estimation Using State-of-the-art Algorithms: a Review AD Univerzitet Singidunum, Beograd, Beograd, Srbija YR 2023 NO doi: 10.15308/Sinteza-2023-100-104
T. Dogandžić and A. Jovanović, Monocular Depth Estimation Using State-of-the-art Algorithms: a Review, Univerzitet Singidunum, Beograd, 2023, doi:10.15308/Sinteza-2023-100-104