Application of Machine Learning to High-repetition-rate Laser-plasma Physics on the Path to Inertial Fusion Energy
Application of Machine Learning to High-repetition-rate Laser-plasma Physics on the Path to Inertial Fusion Energy
Autori:
Izdanje: Sinteza 2023 - International Scientific Conference on Information Technology and Data Related Research
DOI: 10.15308/Sinteza-2023-2-8
Oblast: Computer Science and Artificial Intelligence
Stranice: 2-8
Apstrakt:
One of the grand challenges of the plasma physics community is mastering controlled nuclear fusion as an energy source, with one approach being inertial confinement fusion (ICF). ICF is an extremely complex scientific and engineering problem that spans many physical regimes and requires precise control of the system over many orders of magnitude in space and time. Recent scientific achievements have raised our confidence in the feasibility of this goal, but much work remains to make inertial fusion energy a reality. An important research thrust has been the implementation of machine learning on ICF and specifically on the high-repetition-rate laser systems needed to make fusion energy practical. With an eye to technology transfer, there has been work attempting to operate, understand, and control of HRRLs on smaller laser-plasma experiments and associated modeling efforts. Presented here will be a series of examples of how machine learning is applied to these topics at LLNL.
Ključne reči: Inertial Confinement Fusion, Machine Learning, Plasma Physics, Lasers, Nuclear Energy
Priložene datoteke:
- US - SINTEZA - 2023 - RAD 1 - 2-8 + Autori ( veličina: 715,45 KB, broj pregleda: 108 )
Kategorije objave:
Radovi na konferenciji Sinteza 2023, Beograd, Srbija
Zahvaljujemo se što ste preuzeli publikaciju sa portala Singipedia.
Ukoliko želite da se prijavite za obaveštenja o sadržajima iz oblasti ove publikacije, možete nam ostaviti adresu svoje elektronske pošte.
Preuzimanje citata:
BibTeX format
RefWorks Tagged format
Unapred formatirani prikaz citata
BibTeX format
@article{article, author = {B. Djordjević, P. Bremer, G. Williams, T. Ma and D. Mariscal}, title = {Application of Machine Learning to High-repetition-rate Laser-plasma Physics on the Path to Inertial Fusion Energy}, journal = {Sinteza 2023 - International Scientific Conference on Information Technology and Data Related Research}, year = 2023, pages = {2-8}, doi = {10.15308/Sinteza-2023-2-8} }
RT Conference Proceedings A1 Blagoje Djordjević A1 P.-T. Bremer A1 G.J. Williams A1 T. Ma A1 D.A. Mariscal T1 Application of Machine Learning to High-repetition-rate Laser-plasma Physics on the Path to Inertial Fusion Energy AD Univerzitet Singidunum, Beograd YR 2023 NO doi: 10.15308/Sinteza-2023-2-8
B. Djordjević, P. Bremer, G. Williams, T. Ma and D. Mariscal, Application of Machine Learning to High-repetition-rate Laser-plasma Physics on the Path to Inertial Fusion Energy, Univerzitet Singidunum, Beograd, 2023, doi:10.15308/Sinteza-2023-2-8